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Rapid Planar-Octahedral Interconversion with 
Nickel(H) Complexes 

Sir: 

Yellow or brown diamagnetic planar and blue-violet 
paramagnetic octahedral are both well-established 
forms for nickel(II). With certain polyamine com­
plexes, both conformations exist in solution in detectable 
concentrations. Thus, blue aqueous solutions con­
taining Ni(trien)(H20)2

2+, Ni(Cn)2(H2O)2
2+, or Ni(pn)2-

(H2O)2
2+ turn brownish yellow on heating. The ab­

sorption band at ~440 m/x characteristic of tetragonal 
nickel(II) is developed, and the original color returns 
on cooling the solution.1-2 Aqueous solutions of the 
nickel complex of the quadridentate ligand NH2(CH2)2-
NH(CH2)3NH(CH2)2NH2 (abbreviated 2,3,2-tet) are 
already brown3 and thus contain substantial amounts 
of the planar form at room temperature.4 Information 
on the rate at which such equilibria as (L = trien, or 
2,3,2-tet) 

octahedral-Ni(L)(H20)2
2+ ^ ± : planar-Ni(L)2- + 2H2O 

are established is lacking, but the system is amenable 
to the relaxation method of rate measurement.6 Sizable 
absorbance changes at 440 m/u with a small temperature 
rise, 2.5-6.5°, particularly with the 2,3,2-tet complex, 
allowed work at low amplification and thus at the 
shortest time ranges of the temperature-jump appa­
ratus.5 It was found, however, that with the 1:1 
nickel(II)-trien and nickel(II)-2,3,2-tet systems, the 
establishment of the yellow-blue equilibria was com­
plete at 5° within 10 jusec which was the shortest time 
we could reach with our equipment. The first-order 
rate constant for the conformation change must be 
>105 sec-1. Only a slight "electronic ripple" was ob­
served when solutions of Ni(tren)(H20)2

2+ or KNO3 

were used in the temperature-jump cell. The amine 
tren, N(CH2CH2NH2)3, can only coordinate to leave 
two cis positions in the octahedron. 

We believe that with 2,3,2-tet the fast transition ob­
served is between the frans-octahedral and the planar 
complex. Of relevance are the reactions of the com­
plex with EDTA and oxalate which indicate that there 
are at least two blue isomers of Ni(2,3,2-tet)(H20)2

2+ 

present in solution. Upon mixing EDTA and Ni-
2,3,2-tet (1:1) complex there is an absorbance jump at 
380 xufj. corresponding to about 40% of the total com­
plex present, the remainder, both blue and yellow forms, 
reacting by a slow first-order process (k = 9.3 X 10 -4 

sec - 1 at pH 8.34).6 The fast transition with the trien 
complex may be due to a rrans-octahedral-planar equi­
librium although Ni(trien)(H20)2

2+ is believed to have 
predominantly the c/s-octahedral structure in aqueous 
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solution.1 The high rate constant resembles that 
noted for the planar, tetrahedral change observed with 
certain nickel(II) complexes,7 but it would be surprising 
if the rapid interconversion were between a square-
planar and a m-octahedral form of the tetramine. 
The structure of the yellow complex Ni(trien)(C104)2 

has recently been determined8 and shown to be square-
planar with the Ni-N bond distances (1.9-2.0 A) in 
good agreement with those determined for another 
square-planar nickel complex.9 These bond lengths 
are shorter than those in typical octahedral nickel com­
plexes (2.1-2.2 A),9 and therefore the high intramo­
lecular rate constant observed is a little unexpected. 

A previously reported10 relaxation time of about 5 
msec observed in temperature-jump experiments on Ni-
(trien)(H20)2

2+ is probably due to a slight excess of 
trien present in solution.11 Indeed in the presence of an 
indicator (phenol red) it is possible to observe6 two 
relaxations in the time range 1-10 msec which are 
associated with the equilibria 

Ni(trien)(H20)2
2+ + trien ^r±L Ni(trien),2- + 2H2O 

Ni(trien)2
2- + Ni(trien)(H20)2

2+ - 7 - ^ Ni2(trien)3
4+ + 2H2O 

In the absence of the indicator, the rapidly established 
planar ^± octahedral system would act as a type of 
indicator for the above equilibria. 
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The Structures of 
Pentacarbonyltriphenylphosphinechromium and 
Pentacarbonyl(triphenyl phosphite)chromium 

Sir: 

The occurrence of tr bonding between metals and 
phosphorus ligands has been widely accepted for more 
than a decade,1 although recently this subject has be­
come rather controversial.2-4 Of particular interest 
have been compounds of the type LM(CO)5 where L 
is an amine, phosphine, arsine, etc., and M is chro­
mium, molybdenum, or tungsten. The most volu­
minous data bearing on the subject are infrared car-
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bonyl stretching frequencies and force constant 
data,2 '4-7 although other types of data have been 
presented, such as equilibrium constants,8 metal-ligand 
and metal-carbon stretching frequencies,9 and phos­
phorus-tungsten coupling constants.10'11 To date, 
however, there has been no comparison of two or more 
molecular structures of similar compounds (e.g., LCr-
(CO)5 and L'Cr(CO)5, where L and L' are different 
phosphorus ligands) in which the 7r-bonding ability 
of the ligands are different. 

We report here the preliminary results of such a 
study in which triphenylphosphine and triphenyl phos­
phite were chosen as the ligands because they have been 
shown to have somewhat different bonding properties 
in LM(CO)5 as determined from infrared spectra and 
tungsten-phosphorus coupling constant data.11 

Crystals of pentacarbonyltriphenylphosphinechro-
mium and pentacarbonyl(triphenyl phosphite)chro-
mium are triclinic, Pi, with two formula units in the cell. 
The phosphine complex, (C6Hs)3PCr(CO)5, has cell 
dimensions a = 9.7086 ± 0.0031, b = 11.9419 ± 
0.0020, c = 9.5519 ± 0.0027 A, a = 91.733 ± 0.018°, 
/3 = 95.583 ± 0.038°, y = 74.167 ± 0.015°; and the 
phosphite complex, (C6H5O)3PCr(CO)5, has cell dimen­
sions a = 11.2118 ± 0.0035,6 = 11.4971 ± 0.0044, c = 
10.6950 ± 0.0029 A, a = 114.333 ± 0.039°, /3 = 
105.583 ± 0.028°, 7 = 66.500 ± 0.018°. Data for both 
structures were measured to a 26 of 55° with a General 
Electric XRD-6 automated diffractometer using nio­
bium-filtered molybdenum radiation (X 0.71069) and the 
6-26 scan technique. The structure of the phosphine 
compound was solved by Patterson and Fourier meth­
ods12 and refined to an R value of 0.043 by least-squares 
on 4885 reflections. The structure of the phosphite 
compound was solved by statistical and Fourier meth­
ods12 and refined to an R value of 0.052 on 5263 reflec­
tions. The hydrogen atom positions for both structures 
were assumed from known benzene geometry and re­
fined with isotropic temperature factors. 

The salient structural features of these compounds 
are given in Table I. The phosphorus and five car 

Table I 

Bond 

Cr-P 
Cr-C (lrans) 
C-O (tram) 
Cr-C (cis, av) 
C-O (cis, av) 

Bond length 
Phosphite 

2.309(1) 
1.861 (4) 
1.136(6) 
1.896 (4) 
1.131 (6) 

, A 
Phosphine 

2.422(1) 
1.844(4) 
1.154(5) 
1.880 (4) 
1.147 (6) 

bonyls form an approximate octahedron about chro­
mium, with one carbonyl trans to phosphorus and the 
other four carbonyls cis to phosphorus. The 7r-bond-
ing theory predicts that the trans Cr-C distance should 
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be significantly shorter than the cis Cr-C distances, and 
concomitantly that the cis C-O distances should be 
shorter than the trans C-O distance. This is indeed 
observed in each compound. Furthermore, the in­
frared spectra of these compounds and 193W-31P cou­
pling (411 Hz for the phosphite and 280 Hz for the 
phosphine complex)11 in the analogous tungsten com­
pounds suggests, according to the TT theory, that tri­
phenyl phosphite is a better 7r acceptor than triphenyl­
phosphine. 13>14 

Consequently, it is expected that for the phosphite 
complex the Cr-P distance should be shorter, the trans 
Cr-C bond should be longer, the trans C-O bond should 
be shorter, the cis Cr-C bond should be longer, and 
the cis C-O distance should be shorter than the re­
spective distances in the triphenylphosphine complex. 
Remarkably, all these expectations are experimentally 
confirmed. The ir-bonding theory5'6 also predicts that 
changes in the 7r-acceptor ability of the ligand should 
effect the trans CO about twice as much as the cis 
CO's due to the symmetry and number of metal d 
orbitals involved in the bonding. However, the differ­
ences in both the cis and trans Cr-C and C-O bond 
lengths between the phosphite and phosphine complexes 
are roughly equivalent. 
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Trimethylsilylmercury Complexes1 

Sir: 

The recent communication2 on the possible inter-
mediacy of methylmercury complexes in the exchange 
between methyllithium and dimethylmercury in eiher 
and THF (tetrahydrofuran) prompts us to report our 
observations on timethylsilylmercury complexes. 

We have prepared a series of highly colored com­
pounds (Table I) containing tristrimethylsilylmercury 
or tetrakistrimethylsilylmercury complexes by the re­
actions 

DME 
LiSiMe1 + Hg(SiMe3)3 — > • LiHg(Si Me5)., 

DME 
2LiSiMe3 + Hg(SiMe3)., v Li-Hg(SiMe1J4 

or CsHio 

2Na [K] + 2Hg(SiMe3)2 >• Na2Hg(SiMe3J4 [or K2Hg(SiMe3),] 
CaHio 

The decrease in the 199Hg-1H coupling constant from 
the bis- to the tetrakistrimethylsilylmercury compounds 
is similar to that observed for increasing alkyl sub­
stitution in other organometallic compounds.5 If a 
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